Vibrational Analysis of Flexible Coupling by Considering Unbalance

نویسنده

  • V. Hariharan
چکیده

Misalignment and unbalance is the most cause of machine vibration. An unbalanced rotor always cause more vibration and generates excessive force in the bearing area and reduces the life of the machine. Understanding and practicing the fundamentals of rotating shaft parameters is the first step in reducing unnecessary vibration, reducing maintenance costs and increasing machine uptime. In this paper, experimental studies were performed on a rotor dynamic test apparatus to predict the vibration spectrum for rotor unbalance. A self-designed simplified 3 pin type flexible coupling was used in the experiments. The rotor shaft accelerations were measured at four different speed using accelerometer and dual channel vibration analyzer (ADASH) under the balance (baseline) and unbalance conditions. The experimental and numerical (ANSYS) frequency spectra were also obtained for both base line and unbalanced condition under different unbalanced forces. The experimental predictions are in good agreement with the ANSYS results. Both the experimental and numerical (ANSYS) spectra show that unbalance can be characterized primarily by one times (1X) shaft running speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Nonlinear Vibration Behavior of Rotors with Asymmetry Shaft Considering Misalignment

In this paper, the nonlinear vibration behavior of a rotor with asymmetric shaft considering misalignment is studied. The system consists of a rectangular shaft and a disk which is connected to a motor through a flexible coupling. In order to consider higher order deformations, nonlinear Bernoulli beam is used for modeling the shaft. Gibbons’ equations are utilized to apply misaligned coupling ...

متن کامل

Dynamic Analysis of A Three-Rotor Flexible Coupling with Angular Misalignment

In this paper, the dynamic response of a three-rotor flexible coupling to the angularmisalignment has been studied. The coupling is a power transmission agent between the motor andgearbox, in the power transmission system of SAG Mill (semi autogenously mill) in the Gol-e-Gohariron ore complex in Sirjan, Iran. Degrees of freedom of the system are the model's lateral deflectionsand the rigid-body...

متن کامل

Vibration analysis of coupled double-nanocomposite microplate-systems

The aim of the paper is to analyze electro-thermo nonlinear vibration of a double-piezoelectric composite microplate-system (DPCMPS) based on nonlocal piezoelasticity theory. The two microplates are assumed to be connected by an enclosing elastic medium which is simulated by Pasternak foundation. Both of smart composite microplates are made of poly-vinylidene fluoride (PVDF) reinforced by zigza...

متن کامل

Nonlinear Vibration of a Multirotor System Connected by a Flexible Coupling Subjected to the Holonomic Constraint of Dynamic Angular Misalignment

This paper proposes a mathematical model of the multirotor system with a flexible coupling on spring supports on Lagrange’s approach, which has taken into account the effects of dynamic angular misalignment and mass unbalance. Then its nonlinear dynamic behaviors of the system are discussed based on the method of multiple scales and numerical technique, respectively. The results show that the r...

متن کامل

Robust Fractional-order Control of Flexible-Joint Electrically Driven Robots

This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013